Hormonas vegetales

Hormonas vegetales

Las hormonas son moléculas orgánicas que ya en pequeñas cantidades pueden influir en la fisiología de plantas y animales. Las hormonas juegan un papel importante en el crecimiento, la floración y la maduración del cannabis. En este artículo le explicamos cómo funcionan las hormonas vegetales (fitohormonas) en las plantas y cómo promueven su floración.

Las hormonas se producen en cualquier parte de la planta y se transportan por toda ella. Expresado de forma simplificadora, podríamos decir que se trata de señales que pueden ser emitidas o recibidas por cualquier parte de la planta. Una hoja, por ejemplo, puede enviar una señal a la punta de un tallo para que crezcan flores. Las fitohormonas más conocidas son la auxina, la giberelina, la citocinina, el etileno y el ácido abscísico (ver fig. 1). Además, se han adjudicado efectos parecidos a los de las hormonas a los brasinosteroides, los salicilatos y los jasmonatos.

Auxina

articles-planthormones_text_1 Charles y Francis Darwin iniciaron en los años 1880 una serie de experimentos que confirmarían la existencia de las hormonas vegetales o fitohormonas. El objeto concreto de sus investigaciones fue la influencia de la luz sobre la dirección del crecimiento en la avena (fototropismo). La fitohormona cuyo efecto se probó en estos experimentos, fue la auxina. La auxina se produce en los meristemos apicales de la planta (tanto aéreo como en las raíces) e influye, entre otros, en la absorción de agua, la división celular y la elongación de las células (reblandecimiento de la pared celular). Debido a su efecto se suelen usar distintas formas de auxinas en los preparados estimuladores del crecimiento radicular.

articles-planthormones_text_1
Foto 1: Deformaciones causades
por un exceso de auxina.

La auxina producida en la punta central de la planta de cannabis puede inhibir el crecimiento de las yemas laterales. Este fenómeno se llama “dominancia apical”. Quitando la punta apical (poda) se elimina esta inhibición y se pueden desarrollar las yemas laterales resultando en una planta más ancha. Si se cultivan pocas plantas por metro cuadrado, la poda de las puntas apicales es útil para que las plantas puedan aprovechar mejor la luz. También resulta ventajoso realizar esta poda periódicamente si se quiere obtener una buena planta madre, ya que la planta resultante tiene muchas ramas laterales.

En experimentos realizados por CANNA se ha mostrado que la efectividad de la auxina en cannabis depende en gran medida de la concentración y de la forma de aplicación. Con concentraciones bajas, se observan una cierta estimulación de la formación de flores y una ralentización de la maduración, mientras con concentraciones altas se frena el crecimiento y se producen deformaciones y fenómenos similares a tumores (foto 1).

Giberelina

articles-planthormones_text_2
Foto 2: Efecto de giberelina sobre
cannabis. A la izquierda, una planta
tratada con giberelina; a la
derecha, una planta sin
tratamiento (variedad Santa Maria).

articles-planthormones_text_2La giberelina fue aislada por primera vez en 1935 por el japonés Teijiro Yabuta. La encontró en un hongo que desde hace siglos había causado pérdidas de producción a los arroceros japoneses. Aunque, en primera instancia, la giberelina favorece el crecimiento, más avanzada la temporada de cultivo hace aumentar la presencia de frutos estériles.

Por lo general, la giberelina acelera el crecimiento por medio de la elongación y división de las células. Estimula la germinación de las semillas y la formación de flores en plantas de día largo (por lo tanto, no en cannabis). Entre otros, la giberelina se aplica en la fruticultura, para contribuir al pleno desarrollo de peras o uvas no polinizadas.

En el cannabis, la aplicación de giberelina en concentraciones bajas genera efectos rápidos y evidentes (foto 2). Las plantas cogen un color verde claro y los troncos se agrietan como consecuencia del rápido crecimiento (foto 3). ¡La velocidad de crecimiento puede llegar a alcanzar los 10 cm por día! Al aplicar giberelina durante la fase vegetativa, las plantas retrasan su floración.

La giberelina es para el cannabis lo que la testosterona para el ser humano. Estimula la formación de propiedades y órganos típicamente masculinos, o sea plantas de tallo alto, con espacios internodales más largos y flores masculinas (foto 4). Si se utiliza el polen de estas flores para polinizar flores femeninas, se forman semillas que sólo producen plantas femeninas

articles-planthormones_text_6
Foto 3: Tallo agrietado a consecuencia de un crecimiento excesivo por aplicación de giberelina.

También hay ciertas condiciones ambientales que pueden llevar a un aumento de la producción de giberelina. De esta manera, por ejemplo, la falta de luz resulta en plantas más largas y débiles. Otra condición influyente sería una distancia lámpara/planta reducida. Una distancia demasiado corta puede causar que los cogollos ya florecientes se estiren de nuevo y se vuelvan largos y delgados. Para evitar este inconveniente, la distancia lámpara/planta debería ser de 50 centímetros, como mínimo.

articles-planthormones_text_4
Foto 4: Planta femenina con flores masculinas por aplicación de giberelina. Los pistilos marrones
pertenecen a la flor femenina, los tubitos verdes son los estambres de la flor masculina.

Citocinina

articles-planthormones_text_3El efecto de la citocinina se demostró por primera vez en 1913. 30 años después se descubrió que una sustancia natural presente en la leche de coco era capaz de promover la proliferación celular en plantas. Finalmente, en 1955, se averiguó qué hormona era la responsable de este efecto: la citocinina.

La citocinina se conoce como hormona que promueve la división celular. Estimula el metabolismo y la formación de flores en yemas laterales lo que la convierte en homóloga de las auxinas. Las concentraciones más altas de citocinina se encuentran en los órganos más jóvenes de las plantas (semillas, frutos, hojas jóvenes, ápices de raíz). Concentraciones altas de citocinina en un órgano o tejido determinado llevan a un mayor transporte de azúcares a esta parte de la planta. En cannabis, la aplicación de citocinina resulta en una mayor superficie foliar y una aceleración de la formación de flores. Sin embargo, la finalización de la floración es similar a la de las plantas no tratadas. A este respecto, la citocinina puede ser considerada homóloga de la giberelina ya que estimula la formación de flores femeninas en plantas masculinas.

Etileno

La aplicación práctica del etileno se remonta al Antiguo Egipto donde se practicaron cortes en los higos para acelerar su maduración. En 1934 se descubrió que las plantas producen su propio etileno siendo capaces de regular ellas mismas la maduración de sus frutos.

Desde el punto de vista molecular, el etileno es la fitohormona menos compleja y se produce en todos los órganos de la planta. Se trata de una hormona gaseosa que se transporta a través de los espacios intercelulares de las plantas. Promueve la maduración de los frutos, cierto aumento de la talla y la abcisión (caída) de las hojas.

En determinadas especies vegetales, como la piña, el mango o el lichi, el etileno estimula la formación de flores, pero no así en el caso del cannabis. La aplicación de etileno lleva a plantas más pequeñas y un final muy temprano de la floración (foto 5). Por la rápida maduración, los cogollos se quedan pequeños, presentando los pistilos un típico color naranja-marrón.

articles-planthormones_text_5
Foto 5: A la izquierda, una planta sin tratamiento; a la derecha, una planta tratada con etileno.
La planta tratada tiene cogollos más pequeños debido a la maduración acelerada.

Debido a la alta sensibilidad de las plantas al etileno, la concentración se expresa en partes de etileno por mil millones de partes de aire (parts per billion, ppb). En los tomates, las concentraciones de 10 ppb ya pueden tener efecto. Cuando flores que ya están madurando entran en contacto con plantas jóvenes, existe el riesgo de una maduración prematura de las plantas jóvenes, si el etileno producido les llega a través del aire. Ventilando de vez en cuando (una vez al día) se puede evacuar el etileno que se haya generado. Las concentraciones altas de etileno llevan directamente al amarillamiento foliar.

El etileno se puede acumular también en las raíces si se mantienen demasiado húmedas durante un tiempo prolongado. Posibles efectos son la clorosis foliar, el engrosamiento del tronco, la epinastia (curvatura hacia abajo) de las hojas y una mayor susceptibilidad para enfermedades. En situaciones de estrés, por ejemplo, en caso de enfermedades o daños, la planta produce más etileno y, en consecuencia, se queda más pequeña y adelanta el final de la fase de floración. También el estrés mecánico (por ejemplo, por corrientes de aire causadas por ventiladores) puede causar una producción elevada de etileno que resulta en plantas más pequeñas con troncos más gruesos. Si los ventiladores están demasiado cerca de las plantas, causan un estrés excesivo que puede perjudicar el rendimiento.

Ácido abscísico

articles-planthormones_text_4 El ácido abscísico se aisló por primera vez en 1963 y debe su nombre a la palabra latina abscissio (abcisión). El nombre hace referencia a la suposición que el ácido abscísico era responsable de la abcisión (caída) de las hojas y de los frutos. No obstante, más tarde resultó que el etileno tiene una influencia mucho más directa sobre este proceso.

El ácido abscísico es producido, entre otros, por los cloroplastos de hojas antiguas y posee tanto propiedades inhibidoras (crecimiento) como estimulantes (síntesis de proteínas de almacenamiento en las semillas). Si llega mucho ácido abscísico a los ápices del tronco o de las raíces, la división de células se detiene y la planta entra en latencia.

El ácido abscísico es una hormona muy importante en situaciones de estrés. Por ejemplo, estimula el cierre estomático en caso de estrés hídrico causado, por ejemplo, por altas temperaturas, una baja humedad ambiental y una CE demasiado elevada del medio de nutrición.

La formación de flores en cannabis

Aunque se haya investigado mucho el cambio de crecimiento a floración en las plantas, hasta hoy no se conocen los pormenores de este proceso. En el cannabis, en concreto, la formación y el desarrollo de las flores dependen de la duración de la noche. Si el periodo nocturno dura más de 12 horas, la planta empieza a florecer. Es importante que la oscuridad durante este periodo sea total ya que la planta sólo puede medir el periodo oscuro, pero no él de luz. Lo mide a través de las hojas para enviar, a continuación, una señal a las puntas de los tallos para que empiecen a formar flores. La hormona que transmite esta señal, se llama “florigen”. Aunque hasta el momento nadie haya logrado aislarla, ni nadie sepa cómo es, se considera probable su existencia. Por ejemplo, es posible llevar plantas a la floración con 18 horas de luz, empleando sustancias originarias de plantas florecientes.

Una vez desencadenada la floración, hay varias hormonas que entran en juego. Así, la citocinina y las auxinas son importantes para la continuación del desarrollo y el crecimiento de los cogollos, mientras el ácido abscísico y el etileno lo son para la maduración.

Uso de preparados de hormonas

Si quieres hacer pruebas con preparados de fitohormonas, ten mucho cuidado con cómo, cuándo y en qué cantidades los empleas. La efectividad final depende de muchos factores, como el momento de la aplicación (fase de desarrollo, hora del día), la vía de aplicación (hojas o raíces) o la concentración. En el caso de la auxina, por ejemplo, la concentración es especialmente importante. Mientras en concentraciones bajas estimula el crecimiento radicular, en concentraciones altas promueve la producción de etileno que favorece la finalización prematura de la floración.

Evalúa este artículo: 
5
Average: 4.2 (107 votes)